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Mining for frequent episodes has been an active 
research area in recent years. Numerous algorithms 
have been developed to discover different types of 
episodes, where most of them adopt an a priori-like 
approach that generates candidates and then 
recognises these candidates to determine their 
support. However, such methods are computationally 
expensive, depending on the size and structure of the 
input data. Within this paper a tree growth based 
method is presented discovering episodes without 
candidate generation. The presented method only 
consists of a recognition phase that dynamically 
extends a specialised tree structure to efficiently store 
and process episodes. 

Keywords: data mining methods, pattern discovery, 
episodes mining 

1 Introduction 
Mining large databases to discover different types of 
patterns has been a challenge for a vast number of 
researchers from various domains. Two of the most 
popular pattern types are associations and sequences. 
Different techniques have been introduced over the 
past decade to discover such patterns and to utilize 
them for different domains. A third and important type 
of pattern incorporating associative as well as 
sequential structures is known as episodes. An episode 
is defined as a collection of events, following a certain 
structure, which are relatively close to each other in 
time based on a given threshold. Unlike associations 
and sequences, episodes are discovered using a single 
set structure also called an event sequence. Such an 
event sequence is a sequence of items, where each 
item has an associated time of occurrence. 

Past episode discovery approaches are mostly 
based on traditional a priori-style algorithms that 
generate candidates to build episodes in an iterative 
fashion. Such methods usually generate candidates of 
length n (Phase 1) and then determine their occurrence 
through a recognition step (Phase 2). Due to the 
problems that are associated with each phase, 

traditional candidate generation methods can be very 
costly. However, since Phase 2 depends on the input of 
Phase 1, the problem is aggravated even further, 
because the number of candidates Ck generated by 
Phase 1 can be potentially very large. Phase 2, taking 
Ck  as an input, needs to scan the database to determine 
how often each candidate cj ∈ Ck exists within a given 
event sequence. Thus, as Ck grows, the run time of 
Phase 2 increases as well.  

The approach presented within this paper 
eliminates the need to generate candidates, growing 
episodes in an incremental fashion including only k-
episode patterns that occur within a given event 
sequence (k representing the size of an episode). 
Essentially, the proposed technique only consists of a 
recognition phase, extending dynamically a structural 
representation of all k-episodes, found at a given state 
of the discovery process and adapting their frequency. 

The paper is organized as follows. In Section 2, 
related work is reviewed and drawbacks are shown. 
Within Section 3 episode terminologies are defined. 
Section 4, which is the heart of this paper, describes 
the episode detection algorithm. In Section 5, the 
search space and the algorithm complexity are 
analysed. In Section 6 some experiments are performed 
and evaluated with respect to the overall performance, 
before Section 7 concludes the paper and outlines 
future work. 

2 Related Work 
Episodes are a special kind of pattern which, by 
definition, occur close to each other in time. Such 
patterns provide a powerful technique to analyze time 
series related data, such as error and status log files or 
behavioural patterns, which contain related items or in 
this case events. Examples are found in the 
telecommunications sector, fraud detection 
applications or stock market analyses. 

In [4] and [5] an episode is defined as an a 
collection of events, following a certain structure, that 
are relatively close to each other in time based on a 



given threshold. The WINEPI algorithm presented in 
this paper uses an iterative candidate generation 
method to discover serial and parallel episodes. With 
this method candidates from previous iterations are 
used to generate a new seed of candidates of size n + 1 
for the next iteration. This method is devised to 
consist of two phases: candidate generation phase and 
candidate recognition phase. As the name suggest, the 
former generates candidates, while the latter 
determines if a given candidate fulfils a given 
minimum support constraint. Although the method’s 
flexibility and powerfulness, it suffers from two main 
drawbacks. Firstly, candidate-based methods tend to 
generate too many candidates, specifically during its 
early iterations, and secondly, a complete database 
scan is required for each candidate generation phase. 

In [3], two methods (slice scan and selective 
hash) are introduced to address the problems 
mentioned above. Simplified, slice scan generates a 
collection of candidates Ck’s, which is defined as a 
slice containing candidates of size n to n + slice size 
(Sl). Thereafter, the database is scanned for each slice 
to reduce the number of data base scans. This is an 
effective technique since it reduces the number of 
database scans by a factor Sl – 1. However the cost for 
the reduction in database scans is considerable. Firstly, 
a higher number of candidates need to be tested and 
secondly, the number of candidates generated during 
early iterations is even larger than [5]. To reduce the 
number of candidates a method called selective hash is 
introduced that uses an item hashing technique to filter 
out rare candidate 2-episodes, which reduces the 
number of candidates. [3] provides a significant 
performance improvement over WINEPI, however, it 
still suffers the problems that come from using a 
candidate generation approach. 

[2] introduces a method called frequent pattern 
growth that effectively mines patterns without 
candidate generation. This is done by utilizing 
methods that preserve the essential grouping of 
original data elements that are used for mining the 
desired patterns. The analysis phase then focuses on 
counting the occurrence of the relevant data sets. A 
divide-and-conquer methodology is further introduced 
to reduce the search space through the partitioning of 
the original data set. The presented method is similar 
to the one outlined in this paper. However, the 
frequent pattern growth approach uses only a single 
tree structure and is therefore not optimised for 
episode mining. 

3 Episode Fundamentals 
Like most existing episode-related research, our 
algorithm uses the notation presented in [4]. For better 

understanding and for the sake of completeness 
relevant definitions are given within this section. 

3.1 Event-Related Constructs 
Events: Let E be a class of elementary event types, 
then an event can be defined as a pair p = (e, t), where 
e ∈ E and t is defined as a time related statement. An 
example of an event is 
pn = (A, December:5:2002:22:34:11). 

Event Sequence: An event sequence S is defined as the 
triple S = (tS, tS, S’), where tS, is the starting time and tS 
the closing time of the event sequence and S’ contains 
an ordered list of events. So that S’ is defined as 

S = (t1, tn, [(e1, t1), (e2 t2, (e3 t3,…, (en tn)]), 

where each e ∈ E, each tS ≤ ti ≤ tS and each ti < ti+1. The 
period β covered by S is then β = tS - tS. An example 
event sequence is shown in Figure 1, where the events 
are shown on the top of the time line and the associated 
time of occurrence is shown on the bottom. 

 
Figure 1: Example Event Sequence 

Event Window: An event window W on S’ is an event 
sequence and defined as W = (tW, tW, S’’), where tW < tW 
and tS ≤ tW and S’’ contains all p ∈ S’, where 
tW ≤ ti ≤ tW. The width of an event window w is then 
defined as w = tW – tW. Figure 2 shows an example 
event sequence where the event window of width 3 is 
marked; it further visualizes the shifting (see 
windowing model) across the event sequence. 

 
Figure 2: Event Sequence, w = 3 

Event Window Increment1: The window increment I 
defines how much the event window W is shifted along 
S’ and is between 0 ≤ I ≤ w. The set of all windows in 
S is denoted by V where the size VN of V depends on 
the time period covered, the window increment, and 
the window width and is defined as 

1( ) 1N nt tV
I

ω− − = +  
. 

3.2 Episodes 
An episode is defined as a collection of events, 
following a certain structure, that are relatively close to 

   
1 Other increment methods such as “every event” are also possible. 
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each other in time based on a given threshold. Figure 3 
shows different types of episodes that are described 
next. Episodes are denoted by Φ and |= is used to 
denote that an episode occurs within a given event 
sequence. 

 
Figure 3: Episode Types 

Serial Episodes, ΦS (a): are defined as an ordered list 
(sequence) of events that occur within a given event 
sequence relatively close to each other in time. Such 
that (A,B) ≠ (B,A). Figure 3 (a) shows an example 
episode where A precedes B, and B precedes C. 

Parallel Episodes, ΦP (b): are defined as a set 
(association) of events that occur within a given event 
sequence relatively close to each other. Such that 
(A,B) = (B,A). Figure 3 (b) shows and example 
episode where A, B and C occur independently of 
their order. 

Composite Episodes, ΦC (c): can be seen as a superset 
of parallel and serial episodes (Figure 4). Effectively 
there are a combination of serial and parallel episodes 
in a way that they are defined as an ordered list (serial 
episodes) of sets (parallel episodes) of events that 
occur within a given event sequence relatively close to 
each other in time. Composite episodes can be built, 
by concatenating parallel episodes in a serial fashion. 
Figure 3 (c) shows an example episode where (A, B) 
precedes (C, D). There are no constraints on the order 
of (A, B) or (C, D). 
Frequent Episodes: An episode is called frequent if it 
occurs frequently enough, based on a user’s threshold, 
within a given event sequence. The number of 
occurrences o is based on how often an episode occurs 
in all event windows. Its frequency is calculated as 
f = o / VN. Due to the fact that the underlying structure 
of episodes is set-based, multiple occurrences of an 
episode in a given event window W is counted as 
single occurrence. 

 
Figure 4: Composite Episodes = ΦC ∪ ΦS ∪ ΦP 

3.3 Windowing Model 
As described earlier episodes are defined as collections 
of events, which are close to each other, where close is 
defined by a given threshold. This threshold forms a 
window that, by sliding it over the event sequence S’, 
provides a number of event sub-sequences S’’. This 
creates a view on the event sequence splitting it into 
sub-event sequences containing only events that are 
close enough to each other in time and thus simplifying 
the discovery process. 

ID S’’ ID S’’ ID S’’ 
1 ABF 9 CD 17 AF 
2 BF 10 DB 18 AFB 
3 FC 11 BF 19 FB 
4 CG 12 FC 20 BD 
5 CG 13 CG 21 DB 
6 GF 14 CGD 22 DBF 
7 FC 15 GD   
8 FCD 16 DA   

Table 1: Events (Window Width: 3) 

Table 1 shows a collection of all possible event 
windows of the event sequence shown in Figure 2, 
where the window width is set to 3 and the window 
increment is set to 1. 

Although this technique is effective in that it 
splits up the event sequence and creates a virtual view 
thereof without the need to alter the original event 
sequence, it suffers a certain drawback. A shift of an 
event window does not necessarily result in a change 
of content of the shifting window. Thus, at least one 
event drops out or enters in to the scope of the 
window. To avoid re-processing the same window (the 
same content), a second window is used that virtually 
looks ahead of the current window and determines how 
many shifts are required until the content of the current 
window changes. This offset is then used as an 
increment value to update the frequency of all episodes 
contained in the current window. The next shift 
repositions the window to this offset position ensuring 
that the new window differs from the old one. This 
reduces the number of window shifts VS and thus run 
time. VS partially depends on w and I but mainly on the 
event distribution within the event sequence. For a 
worst case scenario the number of shifts required is 
VS = VN. However, for realistic scenarios VS << VN. 
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A 

B 

C 
b) c) 

C 

D B 
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4 Episode Detection Algorithm 
Given an event sequence S, an event window W of 
width w, an event window increment value I and a 
minimum frequency value fmin , the goal is to find all 
composite episodes contained in S that satisfy fmin  
Within this section a tree growth based algorithm is 
introduced to efficiently discover composite episodes. 

Taking advantage of the fact that episodes can 
be described as directed acyclic graphs, a tree 
structure T is introduced combining sub-episodes into 
a single branch and therefore minimising memory 
usage and processing efforts. For instance, given two 
episodes (A,B,C) and (A,B,D), standard techniques 
store these episodes separately resulting in the need to 
store A and B twice. Using a tree like structure the 
two episodes are combined into (A,B,(C|D)), without 
loosing generality. TP will be used to denote the 
structure that holds parallel episodes and TS will be 
used to store the serial combinations representing 
composite episodes. 

In order to discover composite episodes 
effectively the proposed algorithm is split into two 
phases. First, DP (lines 2 to 11 of Algorithm 1) is 
designed to efficiently discover parallel episodes. 
Second, the result of DP is used by DS|C (lines 12 to 
20) to discover all composite episodes by building a 
serial concatenation of all parallel episodes. 

4.1 Building Parallel Episodes 
Building parallel episodes is similar to the problem of 
finding associative patterns [1] within a given set of 
items (events). This is due to the fact that parallel 
episodes contain a set of events and thus the original 
order in S’’ can be ignored. DP extends iteratively the 
depth of TP alternating between building and pruning 
phases that first build a new level on TP, thus 
discovering all episodes of size + 1 and updates 
relevant occurrence values. After the entire event 
sequence has been scanned, all nodes that do not 
support fmin. are removed and branches that can no 
longer be extended are disabled. This process 
continues until the root node of the tree is disabled and 
therefore TP is marked as inactive. Note, that the root 
node of TP is a dummy, not containing any value. To 
extend the tree a sorted S’’k is used and its values are 
recursively overlaid onto the current tree structure. If 
there is a set of nodes forming a pattern on TP of size i, 
then the leaf node is extended with all remaining 
events in S’’k forming episodes of size i + 1. 
Reoccurring patterns within the same S’’k are 
discarded. Figure 5(a) shows a fully deployed tree 
based on the two windows highlighted in Figure 2. 
Note, that their exists no pattern (F,B) because this is 
covered by (B,F) since (F,B) = (B,F). 

 à V(S), fmin. 

DP 

1) i := 0; 
2) while (TP is active) do 
3) while(V.hasNext) do 
4) sort S’’k 
5) extend TP

i+1 with (S’’k |= Φp) of 
size i +1 and set frequency fΦ 

6) od; 
7) remove all nodes of TP

i+1 where 
fΦ < fmin. and disable non-
extendable branches 

8) i := i + 1; 
9) od; 
10) // Tp is fully deployed containing all Φp 

DS|C 

11) i := 0; 
12) while (TS is active) do 
13) while(V.hasNext) do 
14) Rk = TP (S’’k |= Φp) 
15) extend TS

i+1 with (Rk |= ΦC) of 
size i +1 and set frequency fΦ 

16) od; 
17) remove all nodes of TS

i+1 where 
fΦ < fmin. and disable non-
extendable branches 

18) i := i + 1; 
19) od; 

 ß TS containing all Φ 
Algorithm 1: Main Algorithm 

4.2 Building Composite Episodes 
As described in section 3.2, building composite 
episodes follows the problem of finding sequential 
patterns. Thus, DS|C uses the parallel episodes 
contained in TP to deploy TS. This requires the re-
discovery of all parallel episodes that are contained in 
a given S’’k, resulting in Rk = (r1, r2, r3, … ), where all 
elements in Rk are defined by the triple (tΦ, tΦ, Φp), 
where tΦ represents the start time, tΦ the end time and 
Φp the parallel episode per se. 

DS|C, similar to DP, also works iteratively and 
alternates between the building and pruning phase. The 
disabling or deactivating of nodes is performed 
identically to its parallel counterpart. Figure 5(b) 
shows a fully deployed TS based on TP, where marked 
nodes do not occur at least twice. Nodes in TS do not 
contain any events directly; instead they store 
references to nodes in TP ,̧ indicated through the 
numerical value attached to each node in TP and used 
for TS. Thus, composite episode patterns are 
represented in the structure of TS using references to 
TP. For instance, pattern (1,6) contained in TS reflects 
the episode (A(B,F)). Updating the tree structure to 
extend the depth to include new episodes of size i + 1 
is similar to the update process for parallel episodes. 
DS|C uses a set of all Φp contained in a given S’’k to 
update TS. 



 
Figure 5: Example Tree Structures 

To extend TS, all r ∈ Rk are overlaid recursively onto 
TS. If a set of nodes is found that forms an episode 
pattern of size i then the leaf node is extended with all 
remaining rj for which tΦ (ri) < tΦ (ri+ n). 

4.3 Optimisation 
Algorithm 1 is not optimised to discover exclusively 
serial or parallel episodes. However, it can be 
constrained to do so. By limiting the depth of TS to 
one, only parallel episodes are discovered because TS 
only holds episodes containing a single set of events. 
For serial episodes the depth of TP needs to be set to 
one forcing DS|C to deploy itself with nodes that 
contain only single events. While this shows the 
flexibility of the proposed architecture, it also 
highlights the inefficiency of the procedure when only 
serial or parallel episodes are desired, since only one 
tree is required to build either parallel or serial 
episodes. Separating DP into a single algorithm 
discovering just parallel episodes avoids the 
construction of TS and is therefore more efficient. For 
serial episodes, DP can be used as well simply by 
excluding the sorting method shown in line 5 and 
therefore using the original S’ directly. 

5 Search Space and Complexity 
5.1 Search Space 
The search space Ξ for episodes depends on the 
number of distinct events and the selected window 
size, which limits the maximum number of events in 
any given window and therefore the maximum size of 
an episode. To analyse the search space it is assumed 
that w is greater then the length of the input event 
sequence such that tw = tS and tW > tS. Thus, there is 
only a single event window containing an event sub-

sequence S’’ of size k. It is also assumed that there are 
no two events of the same type. The number of serial or 
parallel episodes of a certain size m are identical and 

calculated as | ( )P S

k
m

m
=

 Ξ  
 

. The overall number of 

serial or parallel episodes is calculated as ΞP|S(k) = 2k -
 1. The search space for composite episodes is 
calculated as 
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This shows that the search space for composite episodes 
exceeds the search space for parallel or serial episodes 
significantly. This is due to the fact that composite 
episodes are build upon parallel episodes, thus if the 
number of parallel episodes increases the number of 
possible serial combinations increases in an exponential 
fashion. 

5.2 Complexity 
To analyse the complexity O of proposed approach, an 
event sequence is used covering a time period β, in 
which an event takes place every second and I is set to 
1. The number of windows to be processed for each 
scan over the database is then VN = m – w + 1. For non-
artificial data VN can be replaced with VS since not every 
window necessarily needs to be processed. However, 
for this analysis VN = VS.  

The number of database scans, Ω, required 
depends on w since it defines the size of the event 
window and therefore the maximum number of events 
in any given W. For this scenario the number of events 
is k = w + 1. As outlined in Section 4, DP and DS|C need 

(a) Parallel Discovery Tree TP
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both in the worst case scenario Ω = k + 1 database 
scans. Assuming also that it takes time α to discover 
all episodes contained in S, then the complexity for DP 

is ( | )P
N

PD
Q V Sα φ= Ω + = . The overall 

complexity for composite episodes is 

| ( | )S C P
N

CD D
Q V S Qα φ= Ω + = + .  

6 Experimental Results 
To evaluate the proposed algorithm several 
experiments have been performed on different 
artificial data sets. The events within all data sets are 
evenly distributed following a uniform distribution. 
All methods have been implemented in Java and the 
experiments have been run on a PC 450 MHz Pentium 
3 Processor with 256 MB RAM and Windows 2000 as 
operating system. 

size t(s)P ΦP t(s)C ΦC 
1 <1 14 <1 16383 
2 <1 91 4 98305 
3 <1 364 6 274431 
4 <1 1001 11 471041 
5 <1 2002 7 553983 
6 <1 3003 6 471041 
7 <1 3432 4 297727 
8 <1 3003 2 141569 
9 <1 2002 1 50623 
10 <1 1001 1 13441 
11 <1 364 <1 2575 
12 <1 91 <1 337 
13 <1 14 <1 27 
14 <1 1 <1 1 

∑ ΦP|C 16383  2391484 
Table 2: Tree Deployment Characteristics 

6.1 Tree Deployment 
To analyse how effective the tree structure can be 
deployed independent from other factors (such as the 
number of windows) a data base is created containing 
14 distinct events, where each event occurs 1 second 
after its predecessor. The window with w is set to 20 
seconds so that there is just one window. Thus 
eliminating VS, the time required to scan the data base 
can be neglected due to the small size of the data set. 
The minimum frequency is set to a single occurrence, 
which means that all episodes will be discovered. 
Table 2 shows the time taken to create each level and 
the number of episodes added at each level for both 
parallel (ΦP) and composite (ΦC) episodes. The sums 
of all nodes are shown in the last row, validating the 
equations given in the previous section. 

6.2 Performance 
In order to analyse the performance of the episode 
detection algorithm, a data base has been created 
containing 300 distinct events types. The overall length 
of the event sequence is 2,000 events covering a period 
of approximately 24 hours. In Table 3 all parallel and 
composite episodes have been discovered using a fixed 
fmin. = 0.03% and a varying window width w. Execution 
times are between less than one second and 30 minutes, 
depending on the window size. For a larger w the 
number of episodes for both parallel and composite 
episodes increases rapidly, indicating the homogeneous 
distribution of events within the database. Table 4 
shows the behaviour for a fixed w = 100 and varying 
fmin.., resulting in execution times between 5 and 66 
seconds in which up to 36,000 episodes are discovered. 
Both Table 3 and Table 4 show a robust and efficient 
behaviour even if larger numbers of episodes are 
discovered. 

w(s) t(s) |Φp| t(s) |ΦC| 
10 <0 322 <0 322 
20 <0 325 <0 326 
40 1 859 1 1456 
80 3 3375 12 8893 

160 26 13264 214 68420 
200 147 42228 1898 427531 

Table 3: Varying w(s) and fixed fmin. = 0.03% 

fmin. t(s) |Φp| t(s) |ΦC| 
0.1 3 857 5 1427 

0.05 5 3553 25 9745 
0.008 8 8022 59 30904 
0.004 9 8619 62 34198 
0.002 9 8813 65 35397 
0.001 9 8940 66 36135 

Table 4: Varying fmin and fixed w(s) = 100 

6.3 Scale Up 
To analyse the scale up properties, different data sets 
have been evaluated scaling different parameters that 
are of influence. 
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Figure 6: Runtime Characteristics, 2,000 Events, 24 

Hours Period, w = 100, I = 1 and fmin = 0.03% 



In Figure 6 the number of distinct events is increased 
from 100 to 2000 resulting only in small runtime 
changes, which are influenced by varying event 
distributions. Figure 7 shows the runtime if the 
number of events increases. This condenses the event 
sequence and increases the number of discovered 
episodes rapidly, as shown in Figure 7 where the 
runtime increases to more than 30 minutes. 
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Figure 7: Runtime Characteristics, 300 distinct Events, 

24 Hours Period, w = 30, I = 1 and fmin = 0.03% 

Figure 8 shows the scale-up characteristics for data 
sets from 10,000 events up to 50,000 events covering 
a time period of 5 to 25 days (see Table 5). The 
analysis shows that the runtime increases linear with 
respect to the size of the input event sequence 
resulting in execution times between 16 and 58 
minutes. 
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Figure 8: Runtime Characteristics, 300 distinct Events, 

w = 100, I = 1 and fmin = 0.01% 

Data Set Number of Events Time Period 
1 10,000 5 Days 
2 20,000 10 Days 
3 30,000 15 Days 
4 40,000 20 Days 
5 50,000 25 Days 

Table 5: Data Set Characteristics 

7 Conclusions and Further Work 
As is the case for all knowledge discovery algorithms 
the size and structure of the input data set significantly 

influences the overall runtime. Therefore it is always 
desirable to keep the number of data base scans to a 
minimum. Two methods can be used to reduce the 
number of database scans. Firstly, the current tree is 
extended by more than one level for each run over the 
database. Secondly, the second tree storing serial 
episodes is extended simultaneously. For instance, if a 
number of parallel episodes are found within a given 
event window and the tree storing these episodes is fully 
updated then these episodes can be used directly to 
growth the tree storing the serial episodes. Both 
methods would effectively reduce the number of 
database scans. However, since unwanted patterns can 
only be removed after a full database scan, the cost is a 
significant memory overhead of episodes that may not 
fulfil the specified constraints. 

Another method to improve data handling is to 
mark event windows that do not extent any pattern as 
inactive and therefore to exclude them from the ongoing 
discovery process. This also can be used as an 
end of discovery threshold because no more patterns can 
be found if the number of active event windows is less 
the support threshold. This also requires a memory 
overhead, which is however acceptable considering the 
expected performance improvement. 

A novel technique has been presented to 
effectively discover frequent composite episodes from 
temporal data. The proposed tree structure provides a 
flexible and efficient method to store and process 
episodes, and excludes the requirement for candidate 
generation.  
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