
Tree Growth based Episode Mining
without Candidate Generation

M. Baumgarten

Faculty of Informatics,
University of Ulster,

Newtownabbey, BT37 0QB, UK

A.G. Büchner
Faculty of Informatics,
University of Ulster,

Newtownabbey, BT37 0QB, UK

J.G. Hughes
University of Ulster,

Coleraine, BT52 1SA, UK

Mining for frequent episodes has been an active
research area in recent years. Numerous algorithms
have been developed to discover different types of
episodes, where most of them adopt an a priori-like
approach that generates candidates and then
recognises these candidates to determine their
support. However, such methods are computationally
expensive, depending on the size and structure of the
input data. Within this paper a tree growth based
method is presented discovering episodes without
candidate generation. The presented method only
consists of a recognition phase that dynamically
extends a specialised tree structure to efficiently store
and process episodes.

Keywords: data mining methods, pattern discovery,
episodes mining

1 Introduction
Mining large databases to discover different types of
patterns has been a challenge for a vast number of
researchers from various domains. Two of the most
popular pattern types are associations and sequences.
Different techniques have been introduced over the
past decade to discover such patterns and to utilize
them for different domains. A third and important type
of pattern incorporating associative as well as
sequential structures is known as episodes. An episode
is defined as a collection of events, following a certain
structure, which are relatively close to each other in
time based on a given threshold. Unlike associations
and sequences, episodes are discovered using a single
set structure also called an event sequence. Such an
event sequence is a sequence of items, where each
item has an associated time of occurrence.

Past episode discovery approaches are mostly
based on traditional a priori-style algorithms that
generate candidates to build episodes in an iterative
fashion. Such methods usually generate candidates of
length n (Phase 1) and then determine their occurrence
through a recognition step (Phase 2). Due to the
problems that are associated with each phase,

traditional candidate generation methods can be very
costly. However, since Phase 2 depends on the input of
Phase 1, the problem is aggravated even further,
because the number of candidates Ck generated by
Phase 1 can be potentially very large. Phase 2, taking
Ck as an input, needs to scan the database to determine
how often each candidate cj ∈ Ck exists within a given
event sequence. Thus, as Ck grows, the run time of
Phase 2 increases as well.

The approach presented within this paper
eliminates the need to generate candidates, growing
episodes in an incremental fashion including only k-
episode patterns that occur within a given event
sequence (k representing the size of an episode).
Essentially, the proposed technique only consists of a
recognition phase, extending dynamically a structural
representation of all k-episodes, found at a given state
of the discovery process and adapting their frequency.

The paper is organized as follows. In Section 2,
related work is reviewed and drawbacks are shown.
Within Section 3 episode terminologies are defined.
Section 4, which is the heart of this paper, describes
the episode detection algorithm. In Section 5, the
search space and the algorithm complexity are
analysed. In Section 6 some experiments are performed
and evaluated with respect to the overall performance,
before Section 7 concludes the paper and outlines
future work.

2 Related Work
Episodes are a special kind of pattern which, by
definition, occur close to each other in time. Such
patterns provide a powerful technique to analyze time
series related data, such as error and status log files or
behavioural patterns, which contain related items or in
this case events. Examples are found in the
telecommunications sector, fraud detection
applications or stock market analyses.

In [4] and [5] an episode is defined as an a
collection of events, following a certain structure, that
are relatively close to each other in time based on a

given threshold. The WINEPI algorithm presented in
this paper uses an iterative candidate generation
method to discover serial and parallel episodes. With
this method candidates from previous iterations are
used to generate a new seed of candidates of size n + 1
for the next iteration. This method is devised to
consist of two phases: candidate generation phase and
candidate recognition phase. As the name suggest, the
former generates candidates, while the latter
determines if a given candidate fulfils a given
minimum support constraint. Although the method’s
flexibility and powerfulness, it suffers from two main
drawbacks. Firstly, candidate-based methods tend to
generate too many candidates, specifically during its
early iterations, and secondly, a complete database
scan is required for each candidate generation phase.

In [3], two methods (slice scan and selective
hash) are introduced to address the problems
mentioned above. Simplified, slice scan generates a
collection of candidates Ck’s, which is defined as a
slice containing candidates of size n to n + slice size
(Sl). Thereafter, the database is scanned for each slice
to reduce the number of data base scans. This is an
effective technique since it reduces the number of
database scans by a factor Sl – 1. However the cost for
the reduction in database scans is considerable. Firstly,
a higher number of candidates need to be tested and
secondly, the number of candidates generated during
early iterations is even larger than [5]. To reduce the
number of candidates a method called selective hash is
introduced that uses an item hashing technique to filter
out rare candidate 2-episodes, which reduces the
number of candidates. [3] provides a significant
performance improvement over WINEPI, however, it
still suffers the problems that come from using a
candidate generation approach.

[2] introduces a method called frequent pattern
growth that effectively mines patterns without
candidate generation. This is done by utilizing
methods that preserve the essential grouping of
original data elements that are used for mining the
desired patterns. The analysis phase then focuses on
counting the occurrence of the relevant data sets. A
divide-and-conquer methodology is further introduced
to reduce the search space through the partitioning of
the original data set. The presented method is similar
to the one outlined in this paper. However, the
frequent pattern growth approach uses only a single
tree structure and is therefore not optimised for
episode mining.

3 Episode Fundamentals
Like most existing episode-related research, our
algorithm uses the notation presented in [4]. For better

understanding and for the sake of completeness
relevant definitions are given within this section.

3.1 Event-Related Constructs
Events: Let E be a class of elementary event types,
then an event can be defined as a pair p = (e, t), where
e ∈ E and t is defined as a time related statement. An
example of an event is
pn = (A, December:5:2002:22:34:11).

Event Sequence: An event sequence S is defined as the
triple S = (tS, tS, S’), where tS, is the starting time and tS
the closing time of the event sequence and S’ contains
an ordered list of events. So that S’ is defined as

S = (t1, tn, [(e1, t1), (e2 t2, (e3 t3,…, (en tn)]),

where each e ∈ E, each tS ≤ ti ≤ tS and each ti < ti+1. The
period β covered by S is then β = tS - tS. An example
event sequence is shown in Figure 1, where the events
are shown on the top of the time line and the associated
time of occurrence is shown on the bottom.

Figure 1: Example Event Sequence

Event Window: An event window W on S’ is an event
sequence and defined as W = (tW, tW, S’’), where tW < tW
and tS ≤ tW and S’’ contains all p ∈ S’, where
tW ≤ ti ≤ tW. The width of an event window w is then
defined as w = tW – tW. Figure 2 shows an example
event sequence where the event window of width 3 is
marked; it further visualizes the shifting (see
windowing model) across the event sequence.

Figure 2: Event Sequence, w = 3

Event Window Increment1: The window increment I
defines how much the event window W is shifted along
S’ and is between 0 ≤ I ≤ w. The set of all windows in
S is denoted by V where the size VN of V depends on
the time period covered, the window increment, and
the window width and is defined as

1() 1N nt tV
I

ω− − = +  
.

3.2 Episodes
An episode is defined as a collection of events,
following a certain structure, that are relatively close to

1 Other increment methods such as “every event” are also possible.

 A B F C G F C D B F C G D A F B D B F

Window Shifting

 A B F C G F C D B F C G D A F B D B F

 1 2 3 … 25

each other in time based on a given threshold. Figure 3
shows different types of episodes that are described
next. Episodes are denoted by Φ and |= is used to
denote that an episode occurs within a given event
sequence.

Figure 3: Episode Types

Serial Episodes, ΦS (a): are defined as an ordered list
(sequence) of events that occur within a given event
sequence relatively close to each other in time. Such
that (A,B) ≠ (B,A). Figure 3 (a) shows an example
episode where A precedes B, and B precedes C.

Parallel Episodes, ΦP (b): are defined as a set
(association) of events that occur within a given event
sequence relatively close to each other. Such that
(A,B) = (B,A). Figure 3 (b) shows and example
episode where A, B and C occur independently of
their order.

Composite Episodes, ΦC (c): can be seen as a superset
of parallel and serial episodes (Figure 4). Effectively
there are a combination of serial and parallel episodes
in a way that they are defined as an ordered list (serial
episodes) of sets (parallel episodes) of events that
occur within a given event sequence relatively close to
each other in time. Composite episodes can be built,
by concatenating parallel episodes in a serial fashion.
Figure 3 (c) shows an example episode where (A, B)
precedes (C, D). There are no constraints on the order
of (A, B) or (C, D).
Frequent Episodes: An episode is called frequent if it
occurs frequently enough, based on a user’s threshold,
within a given event sequence. The number of
occurrences o is based on how often an episode occurs
in all event windows. Its frequency is calculated as
f = o / VN. Due to the fact that the underlying structure
of episodes is set-based, multiple occurrences of an
episode in a given event window W is counted as
single occurrence.

Figure 4: Composite Episodes = ΦC ∪ ΦS ∪ ΦP

3.3 Windowing Model
As described earlier episodes are defined as collections
of events, which are close to each other, where close is
defined by a given threshold. This threshold forms a
window that, by sliding it over the event sequence S’,
provides a number of event sub-sequences S’’. This
creates a view on the event sequence splitting it into
sub-event sequences containing only events that are
close enough to each other in time and thus simplifying
the discovery process.

ID S’’ ID S’’ ID S’’
1 ABF 9 CD 17 AF
2 BF 10 DB 18 AFB
3 FC 11 BF 19 FB
4 CG 12 FC 20 BD
5 CG 13 CG 21 DB
6 GF 14 CGD 22 DBF
7 FC 15 GD
8 FCD 16 DA

Table 1: Events (Window Width: 3)

Table 1 shows a collection of all possible event
windows of the event sequence shown in Figure 2,
where the window width is set to 3 and the window
increment is set to 1.

Although this technique is effective in that it
splits up the event sequence and creates a virtual view
thereof without the need to alter the original event
sequence, it suffers a certain drawback. A shift of an
event window does not necessarily result in a change
of content of the shifting window. Thus, at least one
event drops out or enters in to the scope of the
window. To avoid re-processing the same window (the
same content), a second window is used that virtually
looks ahead of the current window and determines how
many shifts are required until the content of the current
window changes. This offset is then used as an
increment value to update the frequency of all episodes
contained in the current window. The next shift
repositions the window to this offset position ensuring
that the new window differs from the old one. This
reduces the number of window shifts VS and thus run
time. VS partially depends on w and I but mainly on the
event distribution within the event sequence. For a
worst case scenario the number of shifts required is
VS = VN. However, for realistic scenarios VS << VN.

ΦC
ΦS ΦP

A

B

C
b) c)

C

D B

A

A B C
a)

4 Episode Detection Algorithm
Given an event sequence S, an event window W of
width w, an event window increment value I and a
minimum frequency value fmin , the goal is to find all
composite episodes contained in S that satisfy fmin
Within this section a tree growth based algorithm is
introduced to efficiently discover composite episodes.

Taking advantage of the fact that episodes can
be described as directed acyclic graphs, a tree
structure T is introduced combining sub-episodes into
a single branch and therefore minimising memory
usage and processing efforts. For instance, given two
episodes (A,B,C) and (A,B,D), standard techniques
store these episodes separately resulting in the need to
store A and B twice. Using a tree like structure the
two episodes are combined into (A,B,(C|D)), without
loosing generality. TP will be used to denote the
structure that holds parallel episodes and TS will be
used to store the serial combinations representing
composite episodes.

In order to discover composite episodes
effectively the proposed algorithm is split into two
phases. First, DP (lines 2 to 11 of Algorithm 1) is
designed to efficiently discover parallel episodes.
Second, the result of DP is used by DS|C (lines 12 to
20) to discover all composite episodes by building a
serial concatenation of all parallel episodes.

4.1 Building Parallel Episodes
Building parallel episodes is similar to the problem of
finding associative patterns [1] within a given set of
items (events). This is due to the fact that parallel
episodes contain a set of events and thus the original
order in S’’ can be ignored. DP extends iteratively the
depth of TP alternating between building and pruning
phases that first build a new level on TP, thus
discovering all episodes of size + 1 and updates
relevant occurrence values. After the entire event
sequence has been scanned, all nodes that do not
support fmin. are removed and branches that can no
longer be extended are disabled. This process
continues until the root node of the tree is disabled and
therefore TP is marked as inactive. Note, that the root
node of TP is a dummy, not containing any value. To
extend the tree a sorted S’’k is used and its values are
recursively overlaid onto the current tree structure. If
there is a set of nodes forming a pattern on TP of size i,
then the leaf node is extended with all remaining
events in S’’k forming episodes of size i + 1.
Reoccurring patterns within the same S’’k are
discarded. Figure 5(a) shows a fully deployed tree
based on the two windows highlighted in Figure 2.
Note, that their exists no pattern (F,B) because this is
covered by (B,F) since (F,B) = (B,F).

 à V(S), fmin.

DP

1) i := 0;
2) while (TP is active) do
3) while(V.hasNext) do
4) sort S’’k
5) extend TP

i+1 with (S’’k |= Φp) of
size i +1 and set frequency fΦ

6) od;
7) remove all nodes of TP

i+1 where
fΦ < fmin. and disable non-
extendable branches

8) i := i + 1;
9) od;
10) // Tp is fully deployed containing all Φp

DS|C

11) i := 0;
12) while (TS is active) do
13) while(V.hasNext) do
14) Rk = TP (S’’k |= Φp)
15) extend TS

i+1 with (Rk |= ΦC) of
size i +1 and set frequency fΦ

16) od;
17) remove all nodes of TS

i+1 where
fΦ < fmin. and disable non-
extendable branches

18) i := i + 1;
19) od;

 ß TS containing all Φ
Algorithm 1: Main Algorithm

4.2 Building Composite Episodes
As described in section 3.2, building composite
episodes follows the problem of finding sequential
patterns. Thus, DS|C uses the parallel episodes
contained in TP to deploy TS. This requires the re-
discovery of all parallel episodes that are contained in
a given S’’k, resulting in Rk = (r1, r2, r3, …), where all
elements in Rk are defined by the triple (tΦ, tΦ, Φp),
where tΦ represents the start time, tΦ the end time and
Φp the parallel episode per se.

DS|C, similar to DP, also works iteratively and
alternates between the building and pruning phase. The
disabling or deactivating of nodes is performed
identically to its parallel counterpart. Figure 5(b)
shows a fully deployed TS based on TP, where marked
nodes do not occur at least twice. Nodes in TS do not
contain any events directly; instead they store
references to nodes in TP ,̧ indicated through the
numerical value attached to each node in TP and used
for TS. Thus, composite episode patterns are
represented in the structure of TS using references to
TP. For instance, pattern (1,6) contained in TS reflects
the episode (A(B,F)). Updating the tree structure to
extend the depth to include new episodes of size i + 1
is similar to the update process for parallel episodes.
DS|C uses a set of all Φp contained in a given S’’k to
update TS.

Figure 5: Example Tree Structures

To extend TS, all r ∈ Rk are overlaid recursively onto
TS. If a set of nodes is found that forms an episode
pattern of size i then the leaf node is extended with all
remaining rj for which tΦ (ri) < tΦ (ri+ n).

4.3 Optimisation
Algorithm 1 is not optimised to discover exclusively
serial or parallel episodes. However, it can be
constrained to do so. By limiting the depth of TS to
one, only parallel episodes are discovered because TS
only holds episodes containing a single set of events.
For serial episodes the depth of TP needs to be set to
one forcing DS|C to deploy itself with nodes that
contain only single events. While this shows the
flexibility of the proposed architecture, it also
highlights the inefficiency of the procedure when only
serial or parallel episodes are desired, since only one
tree is required to build either parallel or serial
episodes. Separating DP into a single algorithm
discovering just parallel episodes avoids the
construction of TS and is therefore more efficient. For
serial episodes, DP can be used as well simply by
excluding the sorting method shown in line 5 and
therefore using the original S’ directly.

5 Search Space and Complexity
5.1 Search Space
The search space Ξ for episodes depends on the
number of distinct events and the selected window
size, which limits the maximum number of events in
any given window and therefore the maximum size of
an episode. To analyse the search space it is assumed
that w is greater then the length of the input event
sequence such that tw = tS and tW > tS. Thus, there is
only a single event window containing an event sub-

sequence S’’ of size k. It is also assumed that there are
no two events of the same type. The number of serial or
parallel episodes of a certain size m are identical and

calculated as | ()P S

k
m

m
=

 Ξ  
 

. The overall number of

serial or parallel episodes is calculated as ΞP|S(k) = 2k -
 1. The search space for composite episodes is
calculated as

1

0

1 1
() 3

(1) *3 1 1

k
j

C
j C

if k
k

k if k

−

=

=
Ξ = =

Ξ − + >




∑ .

This shows that the search space for composite episodes
exceeds the search space for parallel or serial episodes
significantly. This is due to the fact that composite
episodes are build upon parallel episodes, thus if the
number of parallel episodes increases the number of
possible serial combinations increases in an exponential
fashion.

5.2 Complexity
To analyse the complexity O of proposed approach, an
event sequence is used covering a time period β, in
which an event takes place every second and I is set to
1. The number of windows to be processed for each
scan over the database is then VN = m – w + 1. For non-
artificial data VN can be replaced with VS since not every
window necessarily needs to be processed. However,
for this analysis VN = VS.

The number of database scans, Ω, required
depends on w since it defines the size of the event
window and therefore the maximum number of events
in any given W. For this scenario the number of events
is k = w + 1. As outlined in Section 4, DP and DS|C need

(a) Parallel Discovery Tree TP

A

Root

F B

B F

F

F

1

7

6 5 4

3 2

3 2

Root

1 6 7 2 3 4 5

2 3 6

3 2

3 2

(b) Serial Discovery Tree TS

both in the worst case scenario Ω = k + 1 database
scans. Assuming also that it takes time α to discover
all episodes contained in S, then the complexity for DP

is (|)P
N

PD
Q V Sα φ= Ω + = . The overall

complexity for composite episodes is

| (|)S C P
N

CD D
Q V S Qα φ= Ω + = + .

6 Experimental Results
To evaluate the proposed algorithm several
experiments have been performed on different
artificial data sets. The events within all data sets are
evenly distributed following a uniform distribution.
All methods have been implemented in Java and the
experiments have been run on a PC 450 MHz Pentium
3 Processor with 256 MB RAM and Windows 2000 as
operating system.

size t(s)P ΦP t(s)C ΦC
1 <1 14 <1 16383
2 <1 91 4 98305
3 <1 364 6 274431
4 <1 1001 11 471041
5 <1 2002 7 553983
6 <1 3003 6 471041
7 <1 3432 4 297727
8 <1 3003 2 141569
9 <1 2002 1 50623
10 <1 1001 1 13441
11 <1 364 <1 2575
12 <1 91 <1 337
13 <1 14 <1 27
14 <1 1 <1 1

∑ ΦP|C 16383 2391484
Table 2: Tree Deployment Characteristics

6.1 Tree Deployment
To analyse how effective the tree structure can be
deployed independent from other factors (such as the
number of windows) a data base is created containing
14 distinct events, where each event occurs 1 second
after its predecessor. The window with w is set to 20
seconds so that there is just one window. Thus
eliminating VS, the time required to scan the data base
can be neglected due to the small size of the data set.
The minimum frequency is set to a single occurrence,
which means that all episodes will be discovered.
Table 2 shows the time taken to create each level and
the number of episodes added at each level for both
parallel (ΦP) and composite (ΦC) episodes. The sums
of all nodes are shown in the last row, validating the
equations given in the previous section.

6.2 Performance
In order to analyse the performance of the episode
detection algorithm, a data base has been created
containing 300 distinct events types. The overall length
of the event sequence is 2,000 events covering a period
of approximately 24 hours. In Table 3 all parallel and
composite episodes have been discovered using a fixed
fmin. = 0.03% and a varying window width w. Execution
times are between less than one second and 30 minutes,
depending on the window size. For a larger w the
number of episodes for both parallel and composite
episodes increases rapidly, indicating the homogeneous
distribution of events within the database. Table 4
shows the behaviour for a fixed w = 100 and varying
fmin.., resulting in execution times between 5 and 66
seconds in which up to 36,000 episodes are discovered.
Both Table 3 and Table 4 show a robust and efficient
behaviour even if larger numbers of episodes are
discovered.

w(s) t(s) |Φp| t(s) |ΦC|
10 <0 322 <0 322
20 <0 325 <0 326
40 1 859 1 1456
80 3 3375 12 8893

160 26 13264 214 68420
200 147 42228 1898 427531

Table 3: Varying w(s) and fixed fmin. = 0.03%

fmin. t(s) |Φp| t(s) |ΦC|
0.1 3 857 5 1427

0.05 5 3553 25 9745
0.008 8 8022 59 30904
0.004 9 8619 62 34198
0.002 9 8813 65 35397
0.001 9 8940 66 36135

Table 4: Varying fmin and fixed w(s) = 100

6.3 Scale Up
To analyse the scale up properties, different data sets
have been evaluated scaling different parameters that
are of influence.

0
10

20
30
40

50
60

70
80

100 300 500 700 900 1100 1300 1500 1700 1900

Number of distinct events

Ti
m

e
(s

)

Figure 6: Runtime Characteristics, 2,000 Events, 24

Hours Period, w = 100, I = 1 and fmin = 0.03%

In Figure 6 the number of distinct events is increased
from 100 to 2000 resulting only in small runtime
changes, which are influenced by varying event
distributions. Figure 7 shows the runtime if the
number of events increases. This condenses the event
sequence and increases the number of discovered
episodes rapidly, as shown in Figure 7 where the
runtime increases to more than 30 minutes.

0

500

1000

1500

2000

2500

2 4 6 8 10

Number of Events in Thousand

Ti
m

e
(s

)

Figure 7: Runtime Characteristics, 300 distinct Events,

24 Hours Period, w = 30, I = 1 and fmin = 0.03%

Figure 8 shows the scale-up characteristics for data
sets from 10,000 events up to 50,000 events covering
a time period of 5 to 25 days (see Table 5). The
analysis shows that the runtime increases linear with
respect to the size of the input event sequence
resulting in execution times between 16 and 58
minutes.

0
500

1000
1500
2000
2500
3000
3500

1 2 3 4 5

Data Sets

Ti
m

e
(s

)

Figure 8: Runtime Characteristics, 300 distinct Events,

w = 100, I = 1 and fmin = 0.01%

Data Set Number of Events Time Period
1 10,000 5 Days
2 20,000 10 Days
3 30,000 15 Days
4 40,000 20 Days
5 50,000 25 Days

Table 5: Data Set Characteristics

7 Conclusions and Further Work
As is the case for all knowledge discovery algorithms
the size and structure of the input data set significantly

influences the overall runtime. Therefore it is always
desirable to keep the number of data base scans to a
minimum. Two methods can be used to reduce the
number of database scans. Firstly, the current tree is
extended by more than one level for each run over the
database. Secondly, the second tree storing serial
episodes is extended simultaneously. For instance, if a
number of parallel episodes are found within a given
event window and the tree storing these episodes is fully
updated then these episodes can be used directly to
growth the tree storing the serial episodes. Both
methods would effectively reduce the number of
database scans. However, since unwanted patterns can
only be removed after a full database scan, the cost is a
significant memory overhead of episodes that may not
fulfil the specified constraints.

Another method to improve data handling is to
mark event windows that do not extent any pattern as
inactive and therefore to exclude them from the ongoing
discovery process. This also can be used as an
end of discovery threshold because no more patterns can
be found if the number of active event windows is less
the support threshold. This also requires a memory
overhead, which is however acceptable considering the
expected performance improvement.

A novel technique has been presented to
effectively discover frequent composite episodes from
temporal data. The proposed tree structure provides a
flexible and efficient method to store and process
episodes, and excludes the requirement for candidate
generation.

References
[1] R. Agrawal, S. Srikant: Fast Algorithms for Mining

Association Rules, Proc. Of the 20th VLDB
Conference, Santiago, Chile, 1994

[2] J.Han, J.Pei; Mining Frequent Patterns by Pattern-
Growth: Methodology and Implications; ACM
SIGKDD, Dec. 2000.

[3] Cheng Lin, Ching Yun, Ming Chen; Utilizing slice
scan and selective hash for episode mining; 7th
ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-
2001)

[4] H. Mannila, H. Toivonen, A. Verkamo;
Discovering Frequent Episodes in Sequences;
Proceedings of the International Conference on
Knowledge Discovery and Data Mining; 1995

[5] H. Mannila, H. Toivonen, A.I. Verkamo. Discovery
of Frequent Episodes in Event Sequences, Data
Mining and Knowledge Discovery, 1:259 - 289,
1997.

